
58 The Delphi Magazine Issue 37

The Delphi
CLINIC

Edited by Brian Long

Problems with your Delphi project?

Just email Brian Long, our Delphi
Clinic Editor, on clinic@blong.com

Delphi Component Templates

QIf I create some Delphi com-
ponent templates, which

files do I need to copy on to
another PC to to use them there?

AAll you need to copy from
machine to machine is

Delphi32.DCT from the BIN direc-
tory of Delphi 3 or 4. Incidentally,
there are other files in the BIN
directory which also have poten-
tial value in being copied.
Delphi32.DMT (or Delphi.DMT in
Delphi 1) is the Menu Designer’s
store of menu templates (accessed
through its right-click popup
menu). Also Delphi32.DCI is a text
file containing all the Code Insight
Code Templates from Delphi 3 or 4
(accessed via Ctrl-J in the editor,
and set up from Tools | Environ-
ment Options, Code Insight, Code
Templates).

Current Printer?

QHow do I find out which is
the currently selected

printer?

ACheck out the Printers unit.
As well as the AssignPrn rou-

tine, that allows simple text print-
ing by treating the printer like a
text file, this unit offers a TPrinter
object through a function called
Printer. In Delphi 1 Printer was a
variable declared in the interface
section of the Printer unit and set
up in the initialisation section,
but to aid smart linking it turned
into a so-called ‘factory’ function in
version 2. The first time it is called,
it creates a TPrinter object and
stores it in a variable in the imple-
mentation section. Subsequent
calls simply return the value of that
variable.

To answer your question, the
Printer object has a property
called Printers, which is a TStrings
object containing all the currently
installed printers. Another prop-
erty, PrinterIndex, indicates which
one is the current printer. The fol-
lowing statement would display
the current printer on the screen:

uses
Printers;

...
with Printer do
ShowMessage(
Printers[PrinterIndex])

Export To Excel

QOne of our clients has re-
quested the functionality to

export to Excel files (not using DDE
or OLE), similar to the way Paradox
for Windows exports to Excel. We
have searched the net for assis-
tance in this regard, to no avail. Is it
possible?

AYou should be able to get
hold of an ODBC driver to

write information out to Excel files.
A TBatchMove component could
help copy from, say, a Paradox ta-
ble to an Excel file. Alternatively, if
you were feeling very adventurous,
you could look up the details of the
Excel file format and write code
that generates a file in the appro-
priate format. Excel stores its
worksheets in BIFF files (Binary
Interchange File Format) the lay-
out of which can be found
documented on the Microsoft
Developer Network CDs.

Another option would be to use
Automation. You could write a rou-
tine that invoked Excel through
Automation, and then looped
through your fields, writing infor-
mation to the cells in an Excel

worksheet, and finally saving the
worksheet to disk. Maybe we’ll
have a look at this in a future Clinic.

Flashing Text

QIs there an easy way of get-
ting text to flash? Do you

have to do it manually or is there
an easier way? By manually I mean
by changing the text colour at
certain intervals.

AIn text mode, the video card
supports flashing colours,

but not in graphics mode. So you
are forced to do this manually
(maybe using a TTimer compo-
nent). Alternatively you could use
some component that supports
flashing text. If you do, then you
are taking advantage of some pre-
written code that does it manually
also.

Microsoft Internet
Mail Style Application

QI have a requirement to write
a Delphi application as fol-

lows. The first form that comes up
(maybe the main form?) will be
some form of logon screen. Having
successfully navigated past this
screen, all the subsequent forms
will be fairly independent. As such,
I want each of these subsequent
forms to have its own entry on the
task bar, and when minimised I
want them to disappear into the
task bar, instead of sitting just
above the task bar as they do now.
When one of them is clicked on, I
don’t want all the others to be
brought to the foreground as is
usually the case in a Delphi app.

Also, since the main logon form
is only required at the beginning of
the program, and then hidden
from that point on, I want the main



60 The Delphi Magazine Issue 37

form to have no task bar entry.
Finally, when the last one of my
secondary, non-main forms is
closed, I want my application to
shut.

All this will mimic what I see of
Microsoft Internet Mail’s appear-
ance (apart from my logon form).
Mail can have lots of windows up
(mail messages being written, plus
the main mail window), and each of
these is visible on the task bar.
Bringing any of these windows to
the foreground has no effect on any
other Mail window. You can close
the Mail windows in any order you
like, and the last one shut presuma-
bly unloads Microsoft Mail. Can all
this be done in Delphi?

AAsk and ye shall receive J.
Sometimes.

Of course Delphi can handle this,
so long as you know how to coax it
into co-operating. In fact your main
logon form requirement helps
make this job reasonably easy. You
see, a potential issue is that when
the main form is up on the screen,
the icon used on the task bar (or on
the desktop in Delphi 1 or in Win-
dows NT 3.5) is not actually the
form’s icon. It is in fact the Applica-
tionobject’s window icon. There is
a certain amount of under-the-
hood trickery going on that relies
upon this fact, and the icon of the
main form itself is not visible. So if
we can make the Application
object’s icon disappear, then the
main form will appear to have no
icon.

In fact, at this stage, a 32-bit
application will have no icon at all,
because all subsidiary forms have
no icon. They don’t actually need
an icon, because when they are
minimised they sit themselves at
the bottom of the screen above the
task bar, in just the same way as
minimised MDI child windows sit
themselves at the bottom of the
MDI parent. Issue 19 of The Delphi
Magazine discussed this aspect of
32-bit Delphi application in the -
Window startup mode entry of The
Delphi Clinic.

To get rid of the task bar entry
for a 32-bit application, you can
add ws_Ex_ToolWindow into the
extended window style of the

underlying window. This requires
a bit of API work to get the old
extended window style, add the
new value in, and then set the new,
updated extended window style.
Listing 1 shows some code that can
be placed in a main form’s OnCreate
event handler to do the job in
Delphi 3. I specify a version here
because in fact this does not have
the desired effect in Delphi 2.
Delphi 1 and 2 prefer using the
ShowWindow API call to hide the
Application object window (which
doesn’t quite cut it in Delphi 3).
Really, some conditional compila-
tion is required here.

A test project on the disk, called
UITest.Dpr, has this code in and a
button is used to create ten
instances of a secondary form of
type TOtherForm, using a looped call
to:

TOtherForm.Create(
Application).Show,

after which the main form hides
itself.

The next thing to get sorted is a
sure-fire way of terminating the
application. Currently, if you close
all the secondary forms, then the
application will still be sitting in

SetWindowLong(
Application.Handle, gwl_ExStyle,
GetWindowLong(Application.Handle, gwl_ExStyle) or ws_Ex_ToolWindow)

➤ Listing 1

procedure TOtherForm.FormClose(Sender: TObject; var Action: TCloseAction);
begin
{ If the only forms left are this one being closed and the main form... }
if Screen.FormCount = 2 then
{ ...then close the main form }
Application.MainForm.Close;

{ Ensure this form is destroyed ASAP }
Action := caFree;

end;

➤ Listing 2

memory, but with no icon on the
task bar to close the hidden main
form. So the OnClose handler
shown in Listing 2 can be used in
each of the non-main forms. Then,
as the last non-main form is being
closed, the whole program is
terminated.

With the application now able to
be successfully operated, we can
try the last piece of the puzzle. We
need each non-main form to have
its own task bar icon, and also to
act independently of any other
form in the application. As it turns
out, we can kill both of these meta-
phorical birds with one similarly
metaphorical stone. By default, all
Delphi forms are manufactured
with Windows calls to be children
of the Application object’s
window. If we override the virtual
CreateParams method, we can
choose a new window parent.
Specifying the Windows desktop as
the new parent happens to fulfil
both requirements. See Listing 3.

The sample project implements
all this code to be an example of an
application that acts as required in
Delphi 3 and 4, as well as taking
account of the previously men-
tioned conditional compilation
requirement for Delphi 2.

TOtherForm = class(TForm)
...
private
procedure CreateParams(var Params: TCreateParams); override;

end;
...
procedure TOtherForm.CreateParams(var Params: TCreateParams);
begin
inherited CreateParams(Params);
Params.WndParent := HWnd_Desktop

end;

➤ Listing 3



September 1998 The Delphi Magazine 61

BDE Error Dialog

QI read the BDE Errors item in
Issue 34’s Delphi Clinic. I

know that I can make a replace-
ment default exception handler,
but I have noticed that the 32-bit
Delphi IDEs have a nice little dialog
to report BDE errors. Can I make
use of this dialog in my
applications?

AYes you can. The dialog is a
form implemented in the

VCL’s DBExcept unit. The DCU and
DFM files were supplied in Delphi 2,
but with no source code, which
made it rather tricky to work out
the details. When Delphi 3 came
along, the source file was supplied
as well and so the job becomes
much easier. The only problem is
that the class seems to have
changed somewhat between ver-
sions 2 and 3, and so the source file
doesn’t prove too helpful to Delphi
2 users. The information in this en-
try therefore pertains to Delphi 3
and upward only.

The idea is to create an instance
of the form class, TDbEngineEr-
rorDlg, and store it in its associated
variable, DbEngineErrorDlg. Then
you have a choice of how you deal
with things. If you want to use the
dialog in normal exception han-
dlers, then you simply pass the
relevant EDBEngineError exception
as a parameter to DbEngineEr-
rorDlg.ShowException. Alterna-
tively, you can ask the form to
automatically deal with any unhan-
dled EDBEngineError, by installing
its own default exception handler
(Application.OnException event
handler) through a call to its

➤ Figure 1

HookExceptionsmethod. If you set
up your own Application.OnEx-
ception event handler, make sure
you do it before calling
HookExceptions.

When an exception is picked
up by this form in one way or
another, you get the form shown
in Figure 1. Pressing the Details
button gives the more detailed
form in Figure 2. As you can see,
this gives the information on the
BDE error code that caused the
exception, as well as the associ-
ated error message.

The sample project DBEr-
ror.Dpr is a 32-bit app that uses
this unit to report EDBEngineError
exceptions. The project sets up its
own system-wide exception han-
dler through Application.OnExcep-
tion in the main form’s OnCreate
handler. The customised excep-
tion handler reacts differently to
Access Violation exceptions as you
can see in Listing 4. Immediately
after installing this new global
exception handler, the code
instantiates the error form and
tells it to hook into the default

➤ Figure 2

procedure TForm1.DoException(Sender: TObject; E: Exception);
begin
if E is EAccessViolation then
//Simple reaction to an Access Violation
ShowMessage('Ooch, Ouch, Ow!! That hurt!')

else
//Deal with all other exceptions in the normal way
Application.ShowException(E);

end;
procedure TForm1.FormCreate(Sender: TObject);
begin
//Set up personal default exception handler first
Application.OnException := DoException;
//Now create error dialog
DbEngineErrorDlg := TDbEngineErrorDlg.Create(Application);
//And install automatic support for it
DbEngineErrorDlg.HookExceptions

end;

➤ Listing 4

exception handling chain. Now,
any EDBEngineError exceptions are
handled by the error form, Access
Violations are handled with a
simple message from my DoExcep-
tion routine, and all other excep-
tions are dealt with in their natural
way, thanks to the call to Applica-
tion.ShowException.

To test out these differing excep-
tion handling options, the sup-
plied project has a DBGrid on it
displaying the customer table.
Changing one of the existing CustNo
field values to another, already
existing, CustNo field value will give
an EDBEngineError. There is also a
button on the form dedicated to
causing an Access Violation.

A second button on the form
programmatically causes an
EDBEngineError, by forcing a
unique key violation. A
try..except..end statement traps
this error and explicitly invokes
the error form through its ShowEx-
ception method. The code for
these two buttons is in Listing 5.



62 The Delphi Magazine Issue 37

Capturing DOS Output

QI am trying to capture output
from a 32-bit non-GUI appli-

cation (called DIFF, it compares
two directories) which works at
the command prompt. So if I type:

C:\Diff C:\DiffADir C:\
DiffBDir > C:\Out.Txt

then the file Out.Txt is created,
containing the output from the
command line. However, when I
use CreateProcess and pass the
above line, the application does
not process the output redirection.
Using CreateProcess, I cannot even
capture the output from DIR, which
I can do at the command prompt
using:

Dir C:\ > C:\DirList.Txt

In fact it gives me an error. What
am I missing?

AThe issue at hand is that the
redirection of screen output

to a file you get at the DOS prompt
is in fact implemented by the com-
mand processor. When you launch
your application from CreateProc-
ess, you are leaving the command
processor out of the equation.

The specific problem with the
DIR call is that DIR is not a standa-
lone command. DIR is a command
which is internal to the command
processor.

procedure TForm1.Button1Click(Sender: TObject);
begin
//Generate an Access Violation
IntToStr(PInteger(nil)^)

end;
procedure TForm1.Button2Click(Sender: TObject);
var
CustNo: Double;

begin
try
//Make sure we are not editing
Table1.Cancel;
//Record an existing unique key value
CustNo := Table1['CustNo'];
//Add new record
Table1.Insert;
//Use same unique value
Table1['CustNo'] := CustNo;
//Try and save, giving a key violation error
Table1.Post

except
on E: EDBEngineError do begin
//Ask error form to deal with exception
DbEngineErrorDlg.ShowException(E);
Table1.Cancel;

end
end

end;

➤ Listing 5

➤ Figure 3

➤ Listing 6

In both cases you will actually
need to launch COMMAND.COM as the
application, and ask it to run DIFF
or DIR as a command. You can then
add on the appropriate redirection

or pipe symbols to the command
line and your desires will be met.

Listing 6 has some code that will
work in any 32-bit Delphi applica-
tion. It extracts the fully qualified
path to the command processor,
and then appends the appropriate
command line to make something
like this:

C:\WINDOWS\COMMAND.COM /C
DIR C:\ >C:\DirList.Txt

CreateProcess invokes the com-
mand. The code waits for the com-
mand to start and then waits again
for it to finish. Finally, the
redirected output in the text file is
read into a listbox for the user to
see. Figure 3 shows the program
running.

And that’s all till next time...

procedure TForm1.Button1Click(Sender:TObject);
var
SI: TStartupInfo;
PI: TProcessInformation;
ComSpec: array[0..MAX_PATH] of Char;
CmdLine: String;

begin
GetEnvironmentVariable('COMSPEC', ComSpec, SizeOf(ComSpec));
CmdLine := String(ComSpec) + ' /C ' + Edit1.Text;
GetStartupInfo(SI);
Win32Check(CreateProcess(nil, PChar(CmdLine),
nil, nil, False, 0, nil, nil, SI, PI));

WaitForInputIdle(PI.hProcess, Infinite);
WaitForSingleObject(PI.hProcess, Infinite);
ListBox1.Items.LoadFromFile('C:\DirList.Txt')

end;


	Delphi Component Templates
	Current Printer?
	Export To Excel
	Flashing Text
	Microsoft Internet Mail Style Application
	BDE Error Dialog
	Capturing DOS Output

